Aldehyde dehydrogenase activity identifies a subpopulation of canine adipose-derived stem cells with higher differentiation potential

نویسندگان

  • Harumichi ITOH
  • Shimpei NISHIKAWA
  • Tomoya HARAGUCHI
  • Yu ARIKAWA
  • Masato HIYAMA
  • Shotaro ETO
  • Toshie ISERI
  • Yoshiki ITOH
  • Kenji TANI
  • Munekazu NAKAICHI
  • Yasuho TAURA
  • Kazuhito ITAMOTO
چکیده

Adipose-derived stem cells (ADSCs) are abundant and readily obtained, and have been studied for their clinical applicability in regenerative medicine. Some surface antigens have been identified as markers of different ADSC subpopulations in mice and humans. However, it is unclear whether functionally distinct subpopulations exist in dogs. To address this issue, we evaluated aldehyde dehydrogenase (ALDH) activity-a widely used stem cell marker in mice and humans-by flow cytometry. Approximately 20% of bulk ADSCs showed high ALDH activity. Compared to cells with low activity (ALDHLo), the high-activity (ALDHHi) subpopulation exhibited a higher capacity for adipogenic and osteogenic differentiation. This is the first report of distinct ADSC subpopulations in dogs that differ in terms of adipogenic and osteogenic differentiation potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldehyde dehydrogenase activity helps identify a subpopulation of murine adipose-derived stem cells with enhanced adipogenic and osteogenic differentiation potential

AIM To identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs). METHODS ADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative ...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

From a Chemical Matrix to Biologically/Biomechanically-Defined Matrices-Optimizing/Correlating Growth Rate and Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells

Use of Adipose Stem Cells (ADSCs), obtained easily in a relatively less invasive manner (abdominoplasty) and characterized by flow cytometry, is a classical approach in stem cell research and clinical aspects. Other techniques such as isolation of the cells from bone marrow aspirates  (1) are rather more invasive. Further, it is pertinent to point out that growth rate, differentiatio...

متن کامل

Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2017